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Abstract-The three-dimensional field at a crack front in a bimaterial interface is investigated in 
order to identify relevant fracture parameters in thin plate laboratory specimens. Existence of plane 
stress K-dominance is necessary for the proper analysis of experimental data, which can be obtained 
directly from the crack-tip field by optical methods. The analysis of the three-dimensional structure 
of the crack-tip field presented here is performed in relation to the three-point bend specimen 
geometry used in the experiments described in Lee and Rosakis (1993), Interfacial cracks in plates: 
an experimental investigation (in preparation). It is well known that the three-dimensional field at 
the vicinity of a crack in a plate composed of a homogeneous material extends over a half-plate 
thickness from the crack front. However in a bimaterial fracture specimen, in addition to the 
singular field at the crack tip, mismatch of material properties along the interface induces a strip of 
three-dimensionality extending along the bimaterial interface ahead of the crack tip. The extent of 
the three-dimensional zone and a critical discussion of the zone of K-dominance are presented. The 
relation between the stress intensity factors in the remote plane stress K-field and the stress intensity 
factors inside the near-tip plane strain K-field is also derived by means of a separate boundary-layer 
type of numerical analysis. Finally, a means of scaling the results obtained by experimentation in 
thin plate specimens of a specific thickness-to-plate specimens of any thickness is proposed. 

1. INTRODUCTION 

The scientific estimation of the toughness of interfacial cracks in bimaterial combinations 
is essential in the analysis of failure mechanisms in advanced materials such as fiber
reinforced composites and ceramic composites. Little is known about the three-dimensional 
structure of interfacial cracks in thin bimaterial plates, while the issue of the existence and 
region of dominance of a plane stress K-field has never been explored. In this investigation 
these issues are studied in relation to the three-point bend specimen geometry. This choice 
is partially motivated by the projected use of such a geometry in dynamic fracture exper
iments [see Rosakis et al. (1991)]. 

Detailed three-dimensional computations are necessary for supporting not only on
going quasi-static fracture experiments but also dynamic ones. A major purpose of such 
calculations is to establish the regions near the crack tip where experimental measurements 
can be performed and analysed with maximum accuracy. Parsons et al. (1986) and 
Krishnaswami et al. (1991) investigated the three-dimensional structure of static and 
dynamically loaded cracks in homogeneous elastic materials. Nakamura and Parks (1988, 
1989) studied the three-dimensional aspects of cracks in homogeneous elastic plates under 
mode I and II loading conditions, respectively. They observed that the mode III component 
of the stress intensity factor increases monotonically from the mid-plane of the plate and 
appears to be infinite at the free surface under remote pure mode II loading conditions. 
Narasimhan and Rosakis (1988) observed three-dimensional effects near a crack tip in a 
thin ductile plate. They concluded that many of the discrepancies in the experimental 
literature might arise from the lack of the establishment of an underlying asymptotic field 
which is customarily assumed in the interpretation of the experimental data. 

However, very limited research has been devoted to the investigation of the role of 
three-dimensionality in interfacial cracks. In this case three-dimensional effects in the 
vicinity of an interfacial crack are not only caused by the presence of the crack itself but 
they are enhanced by the presence of the material mismatch along the interface. Recently, 
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Gharhemani and Shih (1990) and Barsoum and Chen (1991) analysed the corner singularity 
of bimaterials by using the finite element method. They showed that many material com
binations do not exhibit oscillatory fields near the corner singularity and that in such cases, 
the singularities of both the symmetric and anti-symmetric modes range from 0.5 to 0.75 
as the material mismatch becomes larger. Even though the corner can serve as a nucleation 
site in an initially straight crack front and the corner-singular field may crucially influence 
the resulting shape of the crack front after initiation, it is energetically unlikely that it will 
play an important role in the whole fracture process through the thickness. This is true 
since the zone size is too small and the well-developed plateau of K-values through the 
thickness dominates. In addition to the singularity at the crack front and the corner 
singularities at the intersection of the crack front with the free surface, other singular fields 
also appear along the line of intersection of the interface plane and the free surface ahead 
of the crack tip in bimaterials due to material mismatch. Bogy (1971) obtained the strength 
of this singularity by solving a series of eigenvalue problems. The singularity of this 
interfacial wedge field (wedge angle is zero) is weaker than the crack front singularity for 
any bimaterial combination and it is not oscillatory. Recently, Nakamura (1991) presented 
a three-dimensional analysis of a center-cracked panel bimaterial fracture specimen. In his 
analysis, the shear moduli and Poisson ratios of the two different materials were particularly 
chosen to suppress the usually oscillatory stress field near the crack tip which is governed 
by mostly plane strain conditions. In his investigation, emphasis was given to the near-tip 
plane strain region. In our work the motivation is entirely different. We are interested in 
providing numerical support to specific sets of experiments. In particular, the first goal of 
this work is related to the investigation of the accuracy of experimental data analysis and 
fracture parameter extraction in three-point bend bimaterial plates of different dimensions. 
This is achieved by numerically analysing the extent of the near-tip field three-dimensional 
zone and by estimating the size of plane stress K-dominance in plates of a variety of crack 
lengths and thicknesses. This seems to be a necessary step prior to experimentation. The 
second goal is to establish a relationship between the far-field, plane stress, complex stress 
intensity factor and the near-tip, plane strain, equivalent. In thin plates, two asymptotic 
fields emanate from the crack tip. One is the plane strain K-field which is located very near 
the crack tip (within the three-dimensional zone). Another is the plane stress K-field which 
surrounds the near-tip three-dimensional zone. The plane strain zone near the tip is too 
small to be captured experimentally. Thus, a conversion process of the experimentally 
observed, plane stress, stress intensity factor, to the near-tip, plane strain, stress intensity 
factor, is necessary to characterize the interfacial toughness of bimaterials. Because of 
the three-dimensional nature of the fields, all three components of stress intensity factor 
depending on the mixity of the external loading, are presented as an outcome of three
dimensional effects. The deviation from the K-field due to the corner singularity at a point 
sufficiently close to the normal intersection of a crack front and a free surface, is also 
observed. 

Coherent Gradient Sensing (CGS) fringe patterns, which were experimentally obtained 
in Lee and Rosakis (1993), are compared with synthetically generated fringes from the 
three-dimensional fininte element analysis. Preliminary CGS fringe data of dynamically 
propagating cracks in an elastic bimaterial (PMMA/aluminum) were recently reported by 
Tippur and Rosakis (1991) and Rosakis et al. (1991). Very high velocities of propagation 
along the interface were observed (80% of the Rayleigh wave speed of the less stiff material, 
PMMA). Since contrary to static experiments, it is very difficult to obtain fracture par
ameters of dynamically propagating cracks by boundary measurements, direct real-time 
measurements of stress or displacement fields near the crack tip by using optical techniques 
are necessary. Such techniques may include the optical method of caustics (Beinert et al., 
1981; Rosakis, 1992), the Stress Intensity Factor Tracer (Kim, 1985), Moire interferometry 
(Post, 1987) and the Coherent Gradient Sensing (CGS) (Tippur et al., 1991; Rosakis, 
1993). This necessity of local measurements partially motivates the current investigation. 
Indeed, the static analysis presented here is an important first step to being able to analyse 
the data taken from the stress field near propagating cracks in dynamic experiments of the 
type described in Rosakis et al. (1991). 
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2. STATEMENT OF PROBLEM 

The finite element calculations are designed to describe the three-dimensional nature 
of the near-tip stress field, to provide the boundary of the three-dimensional zone and to 
establish the region of dominance of the plane stress K-field surrounding this zone. Four 
different solutions are of interest here. These are the three-dimensional full-field and the 
plane stress two-dimensional full-field solutions, for the three-point bend specimen, as well 
as the corresponding plane strain and plane stress asymptotic solutions. The plane strain 
and plane stress asymptotic solutions provide approximations to the three-dimensional full
field solution at different regions near the crack tip. Such approximations allow for the 
extraction of fracture parameters from optical data obtained directly from the crack tip. 
The region of dominance of the plane strain asymptotic solution is confined very deeply 
inside the three-dimensional zone, where measurements are difficult. As a result, it is 
necessary to perform optical measurements outside the near-tip three-dimensional zone 
where a plane stress K-field may exist. Consequently, choice of a specimen geometry that 
could allow for the establishment of such a field is desirable. After we can measure plane 
stress K values from the experiments, they must be converted to local plane strain K values 
which are more likely to represent material properties when the crack initiates and grows. 
For this reason, in the latter part of this paper we perform a boundary-layer type of the 
three-dimensional calculation for the interfacial cracks in the bimaterial plates, which 
provides the relation between the far-field, plane stress, K value and the thickness average 
of the near-tip, plane strain, K value. 

The asymptotic structure of the two-dimensional stress field of the interfacial cracks 
for the given bimaterials is expressed by three components of stress intensity factor in the 
following: 

(1) 

where rand () are the crack tip polar coordinates, K = IKI eil/l is the complex stress intensity 
factor for the coupled in-plane modes, K3 is the mode 3 stress intensity factor, rjJ designates 
the phase angle and L;j,2.3 are the angular variations of stress components for each mode, 
The oscillatory index C is defined in the following: 

(2) 

where Ko = 3 -4vo for plane strain and Ko = (3 - vo)/(l + vo) for plane stress, flo is the shear 
modulus, Vo is the Poisson ratio and the subscripts 1 and 2 refer to the materials above and 
below the crack plane. If the in-plane dimension of the cracked plate is much larger than 
the thickness, it is possible that there is a plane stress K-field outside of the three-dimensional 
zone, coexisting with a plane strain K-field near the crack tip. Therefore, from now on, we 
will use Cg as the oscillatory index under plane strain conditions and Cu as the oscillatory 
index under plane stress conditions in order to avoid confusion. 

For the purpose of comparison with experimental results, material data of com
mercially available poly-methyl methacrylate (PMMA) (material 1) and Al 6061-T6 
(material 2) are used in this computation. The adhesive on the PMMA/aluminum interface 
is the methyl methacrylate monomer (MMA) which polymerizes when it is mixed with a 
catalyst. This results in a bond material with stiffness similar to that of PMMA. In addition, 
the thickness of interface is very small so that we regard this problem as the perfectly 
bonded interface problem of the two materials and we neglect the third material, i.e. the 
polymerized MMA. Material properties of PMMA and aluminum are shown in Table 1. 
The ratio of the Young's moduli of an aluminum to a PMMA is so large, 25 : 1, that very 
large oscillatory indices, Cu and Cg , are obtained as 0.098 and 0.068, respectively. 
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Fig. I. Dimensions of PMMA/aluminum bimaterial three-point bend specimen and schematic 
description of loading. 

3. PLANE STRESS K-FIELD 

The initial set of finite element simulations of the three-point bend experiments are 
attempted under plane stress conditions in order to find the radial distance within which 
the asymptotic solution (K-field) can approximate the full-field solution within a certain 
tolerance. The loading system and the dimensions of specimens are schematically shown in 
Fig. I. A unit load per unit plate thickness is imposed on the center of the top edge of the 
plate. 

It is essential that the discretization near the crack tip must be such as to resolve the 
expected singular crack tip fields adequately. The mesh discretization shown in Fig. 2 
consisting of 864 four-noded isoparametric quadrilateral elements (938 nodes) was found 
to be appropriate for the present investigation. As the crack length for the given specimen 
dimension varies, the configuration of the mesh changes by moving the location of the 
crack tip, while the number of elements is not changed. For the purpose of direct comparison 
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Fig. 2. The two-dimensional and three-dimensional finite element mesh. 
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with the crack length for given in-plane dimension under plane stress conditions. 
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with the experiments in our laboratory, we fix the in-plane dimensions of the specimen 
except the crack length. The specimen thickness also varies. 

The in-plane stress intensity factors are calculated by the combination of the interaction 
energy formulation (Stern et al., 1976; Yau et al., 1980; Shih et al., 1986) and the domain 
integral formulation (Nakamura et al., 1986) as follows. Let the value of the interaction 
energy release rate be denoted as Gint , then 

i [ aux oq ou~ux oq aux oUo oq ] 
Gint = - (Jopz,p ~ -(Jop -~- ~ -(Jop ~ ~ dA, 

Ao uXI UXI uXp UXI uXp 
(3) 

where Greek letters in subscripts range from I to 2, q is a continuous weighting function 
of position and the boundary of the domain (Ao) in the integration is arbitrary. The 
variables with the superscripts "aux" are the solutions of the auxiliary fields corresponding 
to the mode I and 2 plane stress asymptotic fields of the problem, satisfying the equilibrium 
equations and the traction-free conditions on the crack faces. This interaction energy release 
rate is a conservation energy integral and it is related to the stress intensity factors along 
the crack front line by : 

(4) 

where K'i~2 are stress intensity factors for the auxiliary stress field. The effective Young's 

modulus E is defined in the following: 

~_~(I-vi I-vi) ~(I-Vl+I-V2) 
E* - 2 El + E2 ' 2 2 2 ' J.ll J.l2 

(5) 

where J.loS are shear moduli of each material. It is easy to extract each component of stress 
intensity factors by first numerically evaluating Gint , then inserting 1 in the corresponding 
component of stress intensity factors of the auxiliary stress field and neglecting the other 
component in eqn (4). The weighting function q is the cone-shaped function with value I 
at the crack tip and value 0 at the boundary of the domain. 

In Fig. 3, the magnitude of the complex stress intensity factor per unit line force and 
the phase angle are shown according to the ratio of the crack length to the width of the 
plate. The magnitude of the stress intensity factor increases as the crack grows for the given 
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Fig. 4. The extent of the deviation (e l ) of the two-dimensional full field solution from the plane 
stress asymptotic solution. Contour levels of e l = Io--o-AI/lo-AI are illustrated: (a) a/W = 0.2, and 

(b) a/W = 0.4. 

load, while the phase angle decreases. For the given range of the crack lengths, only a small 
change of phase angles, 27° ~ 37°, is observed. 

The extent of the difference between the two-dimensional plane stress full-field solution 
and the corresponding asymptotic K-field solution can be expressed by means of the 
following field quantity: 

(a = 1,2), (6) 

where (lap and (l~p are the stress components of the two-dimensional plane stress full-field 
solution and the asymptotic solution respectively and Einstein's summation convention is 
applied to the repeated subscripts. In Fig. 4, contour plots of this quantity for the cases of 
aj W = 0.2 and 0.4 are illustrated. It should be observed that the contour line of e I = 0.1 
for ajW = 0.2 is further away from the crack tip than that for ajW = 0.4. We may expect 
that the stress state near the neutral axis of bending, which is supposed to be located near 
the center of the ligament, erodes the K-field as the crack length becomes longer for the 
given width of the ligament. Based on this information, the K-field expands until the crack 
length reaches 20% of the plate width and shrinks as the crack length becomes large. 

In the experiments in optical techniques such as the Twyman-Green interferometry, 
the optical method of caustics and or the Coherent Gradient Sensing (CGS), each fringe 
in a plane stress region is proportional to the hydrostatic stresses or its gradient [see Rosakis 
(1992)]. As a result, we may take the value of the hydrostatic stress as a measure of the 
deviation of the full-field solution from the asymptotic solution. In order to quantify this 
deviation, we define the following field quantity involving only hydrostatic stress com
ponents as follows: 

(a = 1,2). (7) 

In Fig. 5, contours of ez for ajW = 0.2 and 0.4 are drawn respectively. The asymptotic 
solution agrees well with the full-field solution in the narrow band, which is centered at 
135° from the crack line. For homogeneous materials, Tippur et al. (1991) also observed 
that the best fit of experimentally obtained CGS fringes to the synthetic CGS fringes of the 
asymptotic stress field was obtained along 120° ~ 130° in various values of ajW. 

The above plane stress calculation establishes the outer boundary of the zone of K
dominance as viewed by means of the two deviation measures el and ez. The inner boundary 
can only be obtained by comparison of the K-field to the fully three-dimensional calculation 
described in the next section. 
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4. THREE-DIMENSIONAL STRESS FIELD 

3145 

In this section, the extent of the three-dimensional zone near the interfacial plane as 
well as near the vicinity of the crack tip will be investigated for the three-point bend 
interfacial experiments. 

In Fig. 2, one of the typical mesh geometries used in the three-dimensional analysis is 
shown. By using the symmetry to the midplane, we modeled only one half of the three
dimensional body. Seven layers of eight-noded hexagonal brick elements through half the 
thickness leading to 7 elements (8 nodes) were used. The in-plane layout is exactly the same 
as that used in the two-dimensional plane stress computation. Recognizing that the largest 
through-thickness variations in the deformation field take place near the free surface, the 
mesh is graded in the thickness direction such that the layer interfaces are at X3/h = 0.056, 
0.139,0.222,0.333,0.417,0.472 and 0.5. The uniform line load through the thickness is 
imposed on top of the specimen while the vertical displacement at the two supports and the 
horizontal displacement on the line of the loading are constrained. 

The main concern is investigating the extent of the deviation of the near tip stress or 
its gradient field from the corresponding plane-stress K-field and to compute the stress 
intensity factors along the three-dimensional crack fronts. 

One of the most effective methods of generating the three components of the stress 
intensity factor from the fully mixed three-dimensional elastic deformation field, makes use 
of the interaction energy release rate formulation developed by Shih and Asaro (1989). 
Similar to the two-dimensional cases, the interaction energy in the three-dimensional con
figuration of cracks can be expressed as follows: 

(8) 

where r(X3) denotes an open contour surrounding the crack front and lying on the plane 
X3 = constant. Roman letters in subscripts range from 1 to 3. As in the two-dimensional 
formulation, the variables with the superscripts "aux" are the solutions of the auxiliary 
field. This interaction energy release rate is a conservation energy integral and it relates to 
stress intensity factors along the crack front line by 

(9) 

where K~uX is the stress intensity factor for the auxiliary stress field of mode 3 at a point X3 

in addition to two-dimensional components KillX and K~ux. It should be noted that unlike 
the plane stress case, discussed in eqn (9), a non-zero K3 component may be present along 
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Fig. 6. Stress intensity factors obtained by two different computational techniques [see Section 4, 
eqns (II) and (12)]. 

portions of the crack front under complete three-dimensional conditions. The effective shear 
modulus of the bimaterial is 

(10) 

The domain integral method due to Nakamura et al. (1989) is adopted for the more 
accurate evaluation of the interaction energy release rate, realizing that the computed fields 
near the tip may be rather inaccurate due to high deformation gradients. Here, we discuss 
two different formulations in computing the interaction energy. The first approach is based 
on the method by Shih et al. (1986), who computed the energy release rate of three
dimensional cracks. This was investigated and compared with other methods of computing 
stress intensity factors discussed by Li et al. (1985). The details of the first approach are 
provided in Nakamura et al. (1989). In this approach, Gint is expressed as: 

(ll) 

where Vo is the volume enclosed by an arbitrarily chosen outer contour strip r 0 with 
thickness hel • The continuous weighting function q vanishes at all points on the boundary 
of the volume Vo except at the crack planes. For further details on this formulation, refer 
to Shih et al. (1986). 

The second expression is obtained by changing the volume integration to an area 
integration by virtue of the divergence theorem Gint then becomes 

(12) 

where the gradients with respect to the out-of-plane coordinate appear only in the last 
parenthesis and can be computed by using smoothing techniques [see Hinton and Campbell 
(1974)]. The weighting function q is the same as the one used in the two-dimensional 
computation. In this calculation, a local smoothing technique was implemented to avoid 
the propagation of the discontinuities of stresses and strains along the interface planes. The 
two local stress intensity factors, at the quadrature points in the thickness direction, were 
thus computed. When eight-noded brick elements are used, as in the present study, the 
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number of locations where the local stress intensity factors are computed in the first 
expression, are approximately half of those of the second expression. This is because the 
number of quadrature points in the thickness direction is approximately twice as many as 
the number of nodal points. In Fig. 6, the comparison of two formulations for the interaction 
energy is presented. Excellent agreement between the two formulations is shown. 

Optical methods such as Twyman-Green interferometry, caustics and Cherent Gradi
ent Sensing (CGS) rely on the net optical path difference accumulated by thickness changes 
caused by the crack-tip singularity and stress-induced changes of the refractive index of the 
material. For an isotropic transparent material, the following expression provides the 
relation between the optical path difference bS acquired during refraction of a collimated 
light bundle through the uniform specimen thickness [see Rosakis et al. (1990) and Rosakis 
(1992)] : 

(13) 

where c" is the stress-optic constant of the material and h is the thickness of the plate. As 
is evident from eqn (13), for either a homogeneous or a bimateria1 cracked linear elastic 
plate of uniform thickness and finite in-plane dimensions, the optical path difference bS 
(transparent specimen) in general will depend on the details of the three-dimensional 
elastostatic or elastodynamic stress state that would exist in the vicinity of the crack tip. 
This will be a function of the specimen geometry and loading. For bimaterial systems, it is 
also expected to depend on the material mismatch. 

Given the lack of full-field three-dimensional analytical solutions in fracture mechanics, 
experimental information can strictly be extracted by means of detailed numerical cal
culations. Nevertheless, there exist certain non-trivial special cases for which available 
asymptotic solutions, based on two-dimensional analyses, may provide adequate approxi
mation for bS at a certain region near the crack tip. In particular it has been argued that 
conditions of plane stress will dominate in thin homogeneous cracked plates at distances 
from the crack front larger than half the specimen thickness. This would imply that if only 
fringes outside the three-dimensional zone are analysed the results could be interpreted on 
the basis of a plane stress analysis [see Rosakis and Ravi-Chandar (1986) and Rosakis 
(1992)]. An equivalent issue arises in the case ofa crack in an interface between two different 
materials. Equation (13) is written in such a way that the second term in the square brackets, 
<T 33/V( <T II + <T 22), is identified as the degree of plane strain. The degree of plane strain is a 
measure of three-dimensionality near the crack tip. This measure is equal to zero under 
strict plane stress conditions and is equal to one under perfect plane strain conditions. At 
points in the specimen where plane stress is a good approximation, that term can be 
neglected and eqn (13) reduces to, 

(14) 

where (0' II + 0' 22) is the thickness average of the hydrostatic stress under plane stress 
conditions. The fringe order is proportional to bS for a Twyman-Green interferometer, 
and is proportional to the derivative of [)S in the shearing direction for CGS. Caustics are 
also related to both gradient components of (0'11 +0'22)' 

To illustrate the extent of the near-tip three-dimensionality, reference is made to Fig. 
7 which shows a three-dimensionality representation of the ratio <T33/V(<TII + ()22) for a three
point bend specimen of a homogeneous material. The ratio is a measure of near-tip three
dimensionality and is obtained by means of a three-dimensional finite element calculation 
which models a stationary crack in a three-point bend specimen. In the figure, only one 
half of the specimen thickness is shown. The top surface corresponds to the mid-plane of 
the specimen. The traction-free crack face is on the left-hand side of the picture. The 
maximum extent of the three-dimensional zone is approximately 0.4 '" 0.5h at () = 0°, while 
at () ~ 120°, the plane stress approximation is adequate very close to the crack tip, say 
r ~ O.lh [for details, see Krishnaswamy et at. (1991)]. 
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For a bimaterial system an equivalent calculation can be made. Figures 8(a) and (b) 
provide two views of the ratio U33/VI(UII +(22) (VI is Poisson's ratio for PMMA) for the 
PMMA/aluminum systems described above. In Fig. 8(a), the ratio is plotted for the specimen 
mid-plane. The top side corresponds to PMMA and the crack surface is visible in the left
hand side of the picture. Figure 8(b) gives a three-dimensional view of the PMMA side 
which is relevant for the analysis of the transmission CGS patterns. Here again the top 
surface of the three-dimensional mesh corresponds to the specimen mid-plane. As is obvious 
from a comparison of Figs 7 and 8(b), the nature of the three-dimensional deformation in 
bimaterials is different to that of homogeneous systems. As is obvious from Figs 8(a) and 
(b), the three-dimensional zone extends along the PMMA/aluminum bond line. Unlike the 
homogeneous case there exists no plane stress region at any visible distance directly ahead 
of the crack tip. Here, plane stress conditions are achieved above a strip of height, roughly 
equal to O.4h, lying ahead of the tip in the PMMA side. In addition, there exists a narrow 
wedge of plane stress defined by 100° < e < 150°, r < O.lh. Close scrutiny of Fig. 8(a) 
reveals that the extent of the near-tip three-dimensional zone in the aluminum side is slightly 
smaller than the PMMA side. Unfortunately, this fact cannot be exploited here since the 
aluminum side also experiences very little deformation thus making the application of 
optical methods difficult. 

Figures 9(a) and (b) show a comparison between the three-dimensional zones cor
responding to a/ W ratios of 0.2 and 0.4 for the same specimen thickness, h, specimen width, 
W, and specimen length, L. As is evident from these figures, the shape and extent of the 
three-dimensional zone remains insensitive to a/ W for this range of a/W. The effect of 
specimen thickness on the near-tip three-dimensional zone is illustrated if Fig. 9(b) is 
compared to Fig. 9(c). Figure 9(c) shows the ratio UdVI(UII+U22) for a specimen of the 
same in-plane dimensions as in Fig. 9(b) but of half the plate thickness. As expected the 
extent of the three-dimensional zone scales with specimen thickness. This is an important 
observation regarding optical experiments. Indeed the outer boundary of dominance of the 
plane stress K-field is only sensitive to the in-plane specimen dimensions and as a result a 
reduction of test specimen thickness may allow for the establishment of such a field around 
a reduced near-tip three-dimensional zone. 

Figure 10 illustrates the establishment of a plane stress K-field outside the near-tip 
three-dimensional zone, for a specific thickness (h = 2.9 mm) and a/W = 0.26. The top 
figure shows the experimentally obtained CGS fringe pattern. The bottom figure compares 
the digitized experimental result (open circles) to the synthetic contours of 0(0' II + O'22)/OX I 
corresponding to a plane stress K-field. The values of KI and K2 are chosen by matching 
the experimental points, outside the three-dimensional zone, to the K-field asymptotic 
solution. The two sets of fringes agree well at points away from the bond line and crack 
flanks as expected from the shape of the three-dimensional zone in Figs 8 and 9. For the 
loops centered at e ~ 135°, disagreement at points furthest from the crack tip indicates that 
higher order terms in the asymptotic expansion might be influencing the experimental 
fringe pattern. Nevertheless, there exists a substantial region surrounding the tip where the 
agreement is excellent. This is further corroborated by the fact that KI and K2 values 
obtained by the fit were very close to the numerically obtained, plane stress equivalents. To 
further illustrate this effect, Fig. 11 compares contours of hydrostatic stress obtained by 
means of the three-dimensional numerical calculation and the asymptotic plane stress field 
for the same specimen geometry as in Fig. 10. The results show the establishment of a well
defined K-field outside the three-dimensional zone. 

5. RELATION BETWEEN THE FAR AND NEAR TIP FIELDS 

In Section 4, the extent of the near-tip three-dimensional zone was investigated for the 
case of a crack in a bimaterial interface. It was further shown that under certain cir
cumstances (mainly related to specimen thickness) a plane stress K-field may be established 
outside the near-tip three-dimensional zone. In an experimental situation we rely on the 
establishment of such a plane stress K-field for the evaluation of the plane stress values of 
the components of the complex stress intensity factor K". Since the goal of experiments is 
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Fig. 10. Comparison between experimentally obtained and synthetically constructed, x,-gradient 
CGS interferograms (a/W = 0.26, h = 2.9 mm). Open circles designate digitized fringe locations of 
photograph. Solid lines represent CGS fringes predicted by means of a complex plane stress K-field. 
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a/W = 0.2 h/W = 0.075 

a/ W = 0.4 h/W = 0.075 

a/W = 0.4 h/W = 0.0375 

A > 1.0 

B = 1.0 

c= 0.8 
D= 0.6 
E = 0.4 

F = 0.2 
G = 0.0 
H = -0 .2 
I = -0.4 
K= -0.6 

L = -0.8 

A = 1.0 

B = 0.8 
C= 0.6 
D = 0.4 

E = 0.2 
F = 0.0 

G= -0. 2 
H = -0.4 
1 = -0 .6 

J = -0 .8 
K = -1.0 

A = 1.0 

B = 0.8 
C= 0.6 

D = 0.4 
E= 0.2 
F= 0.0 
G= -0.2 
H = -0.4 
I = -0.6 

J = -0 .8 
K = - 1.0 

Fig. 9. Three-dimensional contour map showing the degree of plane strain in the near tip region of 
a three point bend, PMMA/aluminum, bimaterial specimen : (a) aj W = 0.2, (b) ajW = 0.4 for a 

plate thickness of 9 mm, and (c) aj W = 0.2 for a plate thickness of 4.5 mm. 

to be able to formulate crack initiation and growth criteria, K" has to be related to a 
more local quantity that determines the behavior near the crack front where plane strain 
conditions dominate. Such a quantity may be K C which is the plane strain equivalent of K". 
In addition, a means of scaling the results obtained from experimentation in thin specimens 
of a specific thickness to K"-dominant specimens of any thickness should be available. To 
achieve the above-mentioned goals, a three-dimensional boundary-layer type of calculation 
is performed here. A semi-infinite interfacial crack in an infinite bimaterial plate of unit 
thickness is modeled. The bimaterial is composed of PMMA and aluminum. At a radial 
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3-D thickness average 

~ 
2-D plane stress 
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Fig. 11. Comparison of hydrostatic stress contours near a crack tip in PMMA/aluminum specimens: 
three-dimensional full-field (dashed lines), two-dimensional plane stress full-field (dotted lines) and 
two-dimensional plane stress K-field (solid lines). Note that the dashed and dotted lines are com-

pletely overlapped in almost all regions. 

distance of 10 thicknesses away from the crack front, the plane stress K-field is applied as 
a remote boundary condition. The three-dimensional mesh is shown in Fig. 12. The total 
number of elements used in this computation was 3344 and 10 layers of elements are used 
in the thickness direction. 

Our purpose here is to relate the amplitude of the far-field (plane stress) complex stress 
intensity factor KrI to the near-tip (plane strain) thickness average equivalent K~ve' These 
are expressed here as 

(15) 

In the above expressions, the subscript "ave" means a plate thickness average as follows: 

(16) 

where Ke(X3) is the local value of the plane strain, complex stress intensity factor along the 
crack front and tfJe(X3) is the local value of the phase angle. It should be emphasized that 

~I 

Fig. 12. Mesh geometry used in the three-dimensional boundary-layer type of computations. 
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unlike homogeneous fracture specimens, in the bimaterial case, the far-field phase angle tjJ" 
and the near-tip thickness average phase angle tjJ~ve are not the same. This is true since in 
the bimaterial case, the asymptotic field cannot be decomposed in two distinct uncoupled 
modes of specific symmetries. 

Application of the three-dimensional version of the path-independent surface integral 
J ave evaluated over two cylindrical surfaces through the plate thickness, surrounding the 
entire crack front, provides the following relation: 

(17) 

where E' is the effective Young's modulus adjusted to the plane stress conditions by 
substituting for Va with the quantities va/(va+ I) in the last term of eqn (5). The contribution 
of the second term in the right-hand side of eqn (17) is expected to be smaller than the first 
term provided that in-plane loading conditions are prescribed. Thus the above equation 
can be approximated as : 

• • E E' 
(IS) 

However, not only the magnitude of the complex stress intensity factor but also the 
phase angles differ between the plane stress far-field and the average plane strain near-tip 
field due to the oscillatory nature of the stresses in bimaterials. Indeed even the oscillatory 
indexes for these two fields are different. Near the crack-tip, conditions of plane strain 
prevail and thus the oscillatory index is given by ee. At the far-field, conditions of plane 
stress are dominant and this index is given bye". 

The relation between the complex values of K" and K~ve are furnished by means of the 
three-dimensional numerical calculation described above. In this calculation the only length 
scale present is the plate thickness. We can thus normalize the spatial coordinates of the 
near-tip field with the thickness. The tractions on the annular plane stress outer boundary 
are expressed as follows: 

. 1 K" 1 ei(,pO +to In r) 

0"22+ 10"12 = M::: 
y2nr 

J.L(l) 1 K" 1 ei(I/i' +e. In r/h) 

J2nr/h 
(19) 

where variables with a superposed hat represent the normalized quantities. In the numerical 
calculation, the external strip of the boundary is subjected to the traction of a normalized 
plane stress bimaterial K-field of unit magnitude, i.e. IK"I = I, and given phase angle ifj". 
The thickness average near-tip plane strain K-field can also be normalized by hand J.L(I) in 
a similar fashion. In addition, the oscillatory index is now given by ee rather than e" in the 
oscillatory index. The relations between the original and normalized complex stress intensity 
factor magnitudes and phase angles for both the far field and average near-tip field are 
given by 

and 

IK"I = IK"IJ.L(I)jh, 

IK~vel = IK~velJ.L(I)jh, (20) 
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Fig. 13. Normalized local near-tip, plane strain, field quantities for a normalized remote plane stress 
K-field of various phase angles: (a) normalized local energy release rate, (b) plane strain phase 

angle t/i'(X3), and (c) mode 3 stress intensity factor /(3' 

1//' = t/iu -su In h, 

(21) 

The average near-tip phase angles, t/i~ve, are computed for the given far-field phase angle 
t/iu by using the method described in Section 4 which provides the local value of Kel and 
It/ie. The average values are given by integrating IK6(X3)1 and t/ie(X3) along the x3-axis. 

Figures 13(a), (b) and (c) give the local distribution of the normalized energy release 
rate, phase angle t/ie(X3/h), and K3(X3/h) respectively across the specimen thickness. In 
each figure, results corresponding to a variety of remotely applied phase angles t/iu of the 
normalized plane stress K-field are shown. The complete range of far-field mixities from 
t/iu = 90° to t/iu = -90° is covered. In Fig. 13(a), the normalized energy release rate remains 
uniform through most of the plate thickness but experiences a drastic increase as the 
specimen surface is approached. This fact may be related to the experimental observation 
by Liechti and Chai (1990) who reported curved crack fronts in bimaterials which are 
concave in the direction of the crack growth. Figure 13(b) shows the variation of local 
normalized t/ie across the crack front. The flatness of these curves is remarkable, suggesting 
that t/i ~ t/i!ve. Finally, Fig. 13(c) gives the thickness variation of the normalized K3 along 
the crack front. It is interesting to note that although the far-field plane stress loading is 
purely in-plane, three-dimensional effects are also demonstrated near the crack front in 
terms of out-of-plane deformation near the specimen free surface. 
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Fig. 14. The variation of Vi;.., the near-tip plane strain phase angle averaged through the plate 
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In Fig. 14, the relation between t/lq and t/I;ve both for a homogeneous material and a 
PMMA/aluminum bimaterial is shown. The relation between t/lq and t/I~ve in the homo
geneous material is linear, as expected, while the bimaterial case is also very close to being 
linear. For the bimaterial case, the relation can be approximated as follows: 

(22) 

where Co ~ 5° and Cl ~ I in the PMMA/aluminum bimaterial. Although the coefficients Co 

and Cl are expected to depend on the specifics of the bimaterial combination used, we 
anticipate that for most bimaterials, Co ~ 0° and Cl ~ 1, since the bimaterial considered 
here corresponds to extremes in stiffness mismatch between the two sides. 

Given the above, eqns (21) and (22) furnish a relation between the non-normalized 
far-field and near-tip phase angles as follows: 

(23) 

where C 0 ~ 0° and C 1 ~ 1. The validity of the above relation in a special case can be checked 
by taking a close look at the results obtained by Nakamura (1991) who considered the case 
of a bimaterial system with 6. = O. He computed the increment of the near-tip phase angle 
by decreasing the thickness of a center-cracked panel where 6q = - 0.033 and Jl.l/ Jl.2 = 3. 
The phase angle increment was about 4.3° for every decade decrease in thickness [see Fig. 
7(a) in Nakamura (1991)]. Our proposed relation in eqn (23) predicts the same change in 
t/I;ve for this special case. Our numerical results for the three-point bend specimen geometry 
also support the validity of the above relation in a totally different bimaterial combination 
and specimen geometry. 

The above simple expressions, eqns (18) and (23), allow us to relate the experimentally 
measurable plane stress K q to the average near-tip K~ve which may be a more relevant 
parameter in the formulation of a fracture criterion. In addition, relation (23) also 
provides a means of comparing the results obtained between specimens with different 
thicknesses. 

6. CONCLUSIONS 

In the first part of this work, a PMMA-aluminum bimaterial specimen of the three
point bend type was modeled by means of three-dimensional and plane stress calculations. 
The analyses provided information regarding the regions near the crack tip where data 
collected by optical measurements can be used to extract fracture parameters in specimens 
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of various crack lengths and thicknesses. The results indicated that severe near-tip three
dimensionality surrounds most of the near-tip region (up to half of the specimen thickness) 
and extends along the interface (strip of width equal to half of the specimen thickness). The 
existence of a plane stress K-dominant region was investigated. 

The second set of calculations concentrated on establishing a relation between the far
field plane stress and the near-tip plane strain complex stress intensity factors in bimaterial 
plates. This relation allows for the scaling of results obtained by experimentation in K
dominant plates of various thicknesses. 
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